Parallelepipeds, nilpotent groups and Gowers norms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallelepipeds, Nilpotent Groups, and Gowers Norms

In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions 2 and 3 and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.

متن کامل

A correspondence principle for the Gowers norms

Informally speaking, the Furstenberg Correspondence [5, 6] shows that the “local behavior” of a dynamical system is controlled by the behavior of sufficiently large finite systems. By the local behavior of a dynamical system (X,B, μ,G), we mean the properties which can be stated using finitely many actions of G and the integral given by μ1. By a finite system, we just mean (S,P(S), c, G) where ...

متن کامل

Nilpotent Groups

The articles [2], [3], [4], [6], [7], [5], [8], [9], [10], and [1] provide the notation and terminology for this paper. For simplicity, we use the following convention: x is a set, G is a group, A, B, H, H1, H2 are subgroups of G, a, b, c are elements of G, F is a finite sequence of elements of the carrier of G, and i, j are elements of N. One can prove the following propositions: (1) ab = a · ...

متن کامل

On generalizations of Gowers norms and their geometry

2 Structure of Norming hypergraph pairs 6 2.1 Two Hölder type inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Factorizable hypergraph pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Semi-norming hypergraph pairs that are not norming . . . . . . . . . . . . . . . . . . . . 12 2.4 Some facts about Gowers norms . . . . . . . . . ....

متن کامل

Gowers norms for the Thue-Morse and Rudin-Shapiro sequences

We estimate Gowers uniformity norms for some classical automatic sequences, such as the Thue-Morse and Rudin-Shapiro sequences. The methods are quite robust and can be extended to a broader class of sequences. As an application, we asymptotically count arithmetic progressions of a given length in the set of integers ≤ N where the Thue-Morse (resp. RudinShapiro) sequence takes the value +1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 2008

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.2561